Big data analytics on Apache Spark
نویسندگان
چکیده
منابع مشابه
Static and Dynamic Big Data Partitioning on Apache Spark
Many of today’s large datasets are organized as a graph. Due to their size it is often infeasible to process these graphs using a single machine. Therefore, many software frameworks and tools have been proposed to process graph on top of distributed infrastructures. This software is often bundled with generic data decomposition strategies that are not optimised for specific algorithms. In this ...
متن کاملA comparison on scalability for batch big data processing on Apache Spark and Apache Flink
*Correspondence: [email protected] 1Department of Computer Science and Artificial Intelligence, CITIC-UGR (Research Center on Information and Communications Technology), University of Granada, Calle Periodista Daniel Saucedo Aranda, 18071 Granada, Spain Full list of author information is available at the end of the article Abstract The large amounts of data have created a need for new fram...
متن کاملApproximate Stream Analytics in Apache Flink and Apache Spark Streaming
Approximate computing aims for efficient execution of workflows where an approximate output is sufficient instead of the exact output. The idea behind approximate computing is to compute over a representative sample instead of the entire input dataset. Thus, approximate computing — based on the chosen sample size — can make a systematic trade-off between the output accuracy and computation effi...
متن کاملA Review: Mapreduce and Spark for Big Data Analytics
In this paper we discuss the various challenges of Big Data and problem arises due to continuous explosion of data resulting from the likes of social media and other online sources to gain access to deeper analysis of their data. This paper discusses two of the comparison of Hadoop Map Reduce and the recently introduced Apache Spark – both of which provide a processing model for analyzing big d...
متن کاملArchitectural Impact on Performance of In-memory Data Analytics: Apache Spark Case Study
While cluster computing frameworks are continuously evolving to provide real-time data analysis capabilities, Apache Spark has managed to be at the forefront of big data analytics for being a unified framework for both, batch and stream data processing. However, recent studies on micro-architectural characterization of in-memory data analytics are limited to only batch processing workloads. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Data Science and Analytics
سال: 2016
ISSN: 2364-415X,2364-4168
DOI: 10.1007/s41060-016-0027-9